	Dz.	Anshul Sh	ama,	(EZ	
Roll Nu	mber:	Anshul Sh 24/11/2023	(\mathcal{E})		
		/			
	TECHNOLOGO AND NATI	ONAL INSTITUTE OF HAMIRPUR (H.	ो संस्थान हमीरपुर – 177 005 (भारत) TECHNOLOGY HAMIRPUR P.) - 177 005 (INDIA)		
	Dane	(An Institute of National Impo artment of Mechani	rtance under Ministry of HRD)		
		THEORY EXAMINA	ATION, Odd Semester 2023-24	* 	
B. Tech	. (7 th Semester): ME4		Course Code: ME - 412 Course Name: Computer Aided Design		
Novemb	per 21, 2023		Tuesday, 02:30 PM – 05:30 PM		
Time: 0	3 Hours, Max Marks: 50		Name of Faculty: Dr. Anshul S	harma	
Q1 (a)	Explain briefly the typical (CAD system Architectu	ire.	[3 Marks]	
Q1 (a)		CAD system Architectu	are. 1, 1), P_1 (2, 3), P_2 (4, 4) and P_3 (6, 1).	[3 Marks] [5 Marks]	
	tangent is 1/7 at this point.		oint of this curve and verify that its		
Q2 (a)	What do you understand modelling.	by Solid Modelling?	Discuss the properties of the solid	[5 Marks]	
Q2 (b)	Do a comparative analys representation (B-rep) meth		olid Geometry (CSG) and Boundary	[5 Marks]	
Q3 (a)	Discuss any two types of ar applications and properties	-	context of their parametric equations,	[4 Marks]	
Q3 (b)		o, discuss the character	Inface patch defined by $(n+1) \times (m+1)$ ristics and type of surface smoothness	[4 Marks]	
Q4 (a)		T]. Also, discuss t	all the elements of the homogeneous he various types of geometrical ms.	[4 Marks]	
total I				1	

Q4 (c) Consider rotating a position vector in the fixed coord by the following rotations in the following order:	rdinate system XYZ, that is, MCS,	[5 Marks]
 (i) 90° about the Z-axis, (ii) 45° about the Y-axis and (iii) 60° about the X-axis. Also, Analyse the effect on the final output, if transformations is reversed.	the order of the abovementioned	
Q5 (a) Briefly describe the general steps involved in the in method. Explain the terms Interpolation Func Discretization used as concepts in the finite element	tion, Kronecker Delta Property,	[4 Marks]
 Q5 (b) For the spring assemblage shown in Figure 2, (a) Obtain the global stiffness matrix [K] of the ass stiffness matrices of the individual springs (Dire (b) If nodes 1 and 5 are fixed and a force P is applied isplacements. (c) Determine the reactions at the fixed nodes 1 and	ct Stiffness Method). ed at node 3, determine the nodal 5 using back substitution method. k - 4 - k - 5	[6 Marks]

1 ...