

राष्ट्रीय प्रौद्योगिकी संस्थान हमीरपुर
 हमीरपुर (हि०प०) - 177005 (भारत)

 NATIONAL INSTITUTE OF TECHNOLOGY HAMIRPUR

 NATIONAL INSTITUTE OF TECHNOLOGY HAMIRPUR}

HAMIRPUR (H.P.) - 177005 (INDIA)
(An Institute of National Importance under Ministry of $H R D$)

Department of Mechanical Engineering

END SEMESTER THEORY EXAMINATION, Odd Semester 2023-24

Q4 (b)	A machine block is shown in Figure 1. Using transformations, represent the three principal views (Front, Top and Right) and Isometric view of machine block with respect to screen/viewing coordinates. Figure 1	[5 Marks]
Q4 (c)	Consider rotating a position vector in the fixed coordinate system $X Y Z$, that is, MCS, by the following rotations in the following order: (i) 90° about the Z-axis, (ii) 45° about the Y-axis and (iii) 60° about the X-axis. Also, Analyse the effect on the final output, if the order of the abovementioned transformations is reversed.	[5 Marks]
Q5 (a)	Briefly describe the general steps involved in the implementation of the finite element method. Explain the terms Interpolation Function, Kronecker Delta Property, Discretization used as concepts in the finite element method.	[4 Marks]
Q5 (b)	For the spring assemblage shown in Figure 2, (a) Obtain the global stiffness matrix $[K]$ of the assemblage using superimposing the stiffness matrices of the individual springs (Direct Stiffness Method). (b) If nodes 1 and 5 are fixed and a force P is applied at node 3, determine the nodal displacements. (c) Determine the reactions at the fixed nodes 1 and 5 using back substitution method. Figure 2	[6 Marks]

