Department of Mechanical Engineering

End Semester Examination

B. Tech. VII Semester

Max. Marks: 50
Time: 3:00 Hrs

Sub.: Operations Research (ME-411)

Instructions: All questions are compulsory; weightage of marks are mentioned against the questions.

Q1 Maximize $Z=x_{1}+2 x_{2}+3 x_{3}-x_{4}$,
subject to $\quad x_{1}+2 x_{2}+3 x_{3}=15$,

$$
\begin{aligned}
& 2 x_{1}+x_{2}+5 x_{3}=20 \\
& x_{1}+2 x_{2}+x_{3}+x_{4}=10 \\
& x_{1}, x_{2}, x_{3}, x_{4} \geq 0
\end{aligned}
$$

Q2 Five wagons are available at station 1,2,3, 4 and 5. These are required at five stations I, II, III, IV, and V. The mileages between various stations are given by the table below. How should the wagons be transported so as to minimize the total mileage covered.

Q3 Find the optimum solution to the following transportation problem in which the cells contain the unit transportation cost in rupees.

Q4 Solve the following 2×4 game by graphical method and find the two alternate solutions:

Q5 Task A, B, C,, H, I constitute a project. The precedence relationships are: A $<$ D; A $<\mathrm{E} ; \mathrm{B}<\mathrm{F} ; \mathrm{D}<\mathrm{F} ; \mathrm{C}<\mathrm{G} ; \mathrm{C}<\mathrm{H} ; \mathrm{F}<\mathrm{I} ; \mathrm{G}<\mathrm{I} ;$
Draw a network to represent the project and find the minimum time of completion of the project when time, in days, of each task is as follows:

Task:	A	B	C	D	E	F	G	H	I
Time:	8	10	8	10	16	17	18	14	9

also identify the critical path.

