End Semester Examination, December 2023

Class: B.Tech. (First Year), Semester: I
Course Name: Linear Algebra and Calculus
Course Code: MA-111

Note: Each question is compulsory.

1. If the system of equations $x+a y+a z=0, b x+y+b z=0, c x+c y+z=0$, where a, b, c are non-zero and non-unity, has nontrivial solution then show that,

$$
\frac{a}{1-a}+\frac{b}{1-b}+\frac{c}{1-c}=-1
$$

Also find the solution when $a=b=c=2$.
2. Prove that eigen values of Hermitian matrix are real.
3. State the Taylor's theorem for function of two variables. Expand $f(x, y)=\tan ^{-1} x y$ in power of $(x-1)$ and $(y+1)$ up to third degree term. Hence compute $f(1.1,-0.9)$ approximately. $[1+3+1]$
4. Trace the curve $x^{2} y^{2}=a^{2}\left(y^{2}-x^{2}\right)$.
5. Evaluate the following integral by changing the order of integration to spherical coordinates [5]

$$
\int_{0}^{1} \int_{0}^{\sqrt{1-x^{2}}} \int_{0}^{\sqrt{1-x^{2}-y^{2}}} \frac{d x d y d z}{\sqrt{1-x^{2}-y^{2}-z^{2}}}
$$

6. Evaluate the following integral by changing the order of integration

$$
\begin{equation*}
\int_{0}^{2} \int_{1}^{e^{x}} d x d y \tag{1+4}
\end{equation*}
$$

7. write and prove Frenet's formulae.
8. (i) Find the directional derivative of $f(x, y, z)=x y^{2}+y z^{3}$ at the point $(2,-1,1)$ in the direction of the vector $\hat{\mathbf{i}}+2 \hat{\mathbf{j}}+2 \hat{\mathbf{k}}$.
(ii) Prove that $\nabla r^{n}=n r^{n-2} \mathbf{R}$, where $\mathbf{R}=x \hat{\mathbf{i}}+y \hat{\mathbf{j}}+z \hat{\mathbf{k}}$.
9. State Green's theorem. Verify Green's theorem for $\int_{C}\left(x y+y^{2}\right) d x+x^{2} d y$, where C is bounded by $y=x$ and $y=x^{2}$.
$[1+4]$
10. Evaluate $\int_{S} \overrightarrow{\mathrm{~F}} \cdot \hat{\mathbf{n}} d s$ where $\overrightarrow{\mathrm{F}}=x \hat{\mathrm{i}}-y \hat{\mathrm{j}}+\left(z^{2}-1\right) \hat{\mathbf{k}}$ and S is closed surface bounded by plane $z=0$ and $z=1$ and cyclinder $x^{2}+y^{2}=4$. Also verify Gauss-Divergence theorem. $[3+2]$
