$\mathfrak{N a t i o n a l}$ Institute of Technology, \mathcal{H} amirpur ($\mathcal{H}(\mathbb{P})$

Name of the Examination: B.Tech.

Branch
Course Name :Signals \& Systems
Time: 3 Hours

Semester $\quad: 5^{\text {th }}$
Course Code : EE-313

Maximum Marks: 50

Note :

1. All Questions are compulsory
2. Draw the relevant diagrams/figures
3. Assume data wherever required

Q1) (a) Impulse response of discrete time LTI system is given below. Determine whether the given system is causal and/ or stable. Justify your answer.

$$
h[n]=\left(-\frac{1}{2}\right)^{n} u[n]+(1.01)^{n} u[n-1]
$$

(b) Determine the range of values of " a " and " b " for the stability of LTI system with impulse response $h[n]= \begin{cases}b^{n} & ; n<0 \\ a^{n} & ; n \geq 0\end{cases}$
Q2) The impulse response of a linear time-invariant system is $h(n)=[1,2,1,-1]$. Determine the response of the system to the input signal $x(n)=[1,2,3,1]$ using graphical method. Verify the result using convolution sum.

Q3) Determine the response $y[n], n \geq 0$ of the system described by the second order difference equation, $y[n]-2 y[n-1]-3 y[n-2]=x[n]+4 x[n-1]$,
when the input signal is, $x[n]=2^{n} u[n]$ and with initial conditions $y[-2]=0, y[-1]=5$.
Q4) Determine the Fourier series and power density spectrum of the rectangular pulse train signal illustrated in figure below.

Q5) The input and output of a causal LTI system are described by the differential equation

$$
\frac{d^{2} y(t)}{d t^{2}}+3 \frac{d y(t)}{d t}+2 y(t)=x(t)
$$

(a) Find the frequency response of the system.
(b) Using the result in (a) find the impulse response of the system.
(c) What is the response of the system if $x(t)=t e^{-t} u(t)$.

Q6) (a) Determine the z - transform of the signal $x[n]=-a^{n} u[-n-1]$.
(b) Find the inverse z - transform of the given $X(z)=\log \left(\frac{1}{1-a z^{-1}}\right),|z|>|a|$

Q7) Using the properties of DTFT, find the DTFT of the following signals
(a) $\left(\frac{1}{4}\right)^{|n-2|}$
(b) $n 3^{-n} u[-n]$
(5)

Q8) Let $x[n]$ be a real periodic sequence with fundamental period N_{0} and Fourier coefficients $c_{k}=a_{k}+j b_{k}$, where a_{k} and b_{k} are both real.
(a) Show that $a_{-k}=a_{k}$ and $b_{-k}=-b_{k}$.
(b) Show that $c_{N_{0} / 2}$ is real if N_{0} is even.

Q9) Write a short note on the following.
a. Properties of z-transform
b. Classification of Systems

