Dr Paramycet Sing's Jamual.

25)12/20V

National Institute of Technology Hamirpur

Electrical Engineering Department B.Tech End-Semester Examination – 2023

Semester: I

Subject: Basic Electrical Engineering

Maximum Marks: 50

Code: EE-101

Duration: 3 Hours

(Answer All Questions)

 $5 \times 10 = 50$

Note: Attempt questions in sequence

1a	Write the voltage-current relationships of circuit elements in time-domain and phasor domain. Draw their phasor diagrams also.	3
1b	For the circuit shown below, find (i) Thevenin equivalent and (ii) Norton equivalent circuits $\frac{5\Omega}{i_s}$	7
2a	Derive an expression for the instantaneous power in a single-phase system.	3
2b	A three-phase balanced Y-Y system is shown below: $ \begin{array}{cccccccccccccccccccccccccccccccccccc$	7

3a	Draw the B-H characteristics of (i) hard magnetic material, (ii) soft steel, (iii) ferrite core	3
3b	$N = 1000$ Core thickness = 2 cm $\mu_{core} = 5000 \ \mu_0$ Determine the current required to establish a flux density of 0.5 T in the air-gap, (a) neglecting fringing, (b) considering fringing	7
4a	Draw and explain the equivalent circuit of transformer.	3
4b	A single-phase transformer with load is shown below:	7
5a	Moving coil of a galvanometer has 60 turns and a width of 2 cm and a depth of 3 cm. It hangs in a uniform radial field of 50 mWb/m². Determine the torque on the coil when it carries a current of 1 mA.	3
5b	With a neat diagram, explain the working of induction type wattmeter.	7