Dr. Ragal Kangro

Department of Civil Engineering, NIT Hamirpur (H.P.) End Semester Examination -2023

Design of Hydraulic Structures (CE-411)

Branch: B.Tech (Civil Engineering) Time: 3 Hours

Semester:7th Max Marks: 50

21/11/2025

Note: All questions are compulsory.

1.	Define Hydraulic jump. What are the different types of jumps based or	1 the	Froude
	number?		(4)
2.	Differentiate between		
	a) Syphon aqueduct and Canal syphon		(2)
	b) Level crossing and inlet-outlet structure		(2)
			(-)

- 3. Derive an expression for seepage analysis for two dimensional flow and state assumptions made in the seepage analysis for earth dam? (6)
- 4. A barrage is to be constructed on a river having a high flood discharge of about 7900 cumecs, with the given data as follows:

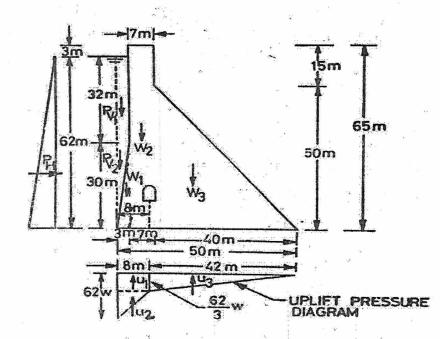
Average bed level of the river =259 m

High Flood level (before construction of barrage) = 265.2 m

Permissible afflux = 1 m

Pond Level =262.6 m

Prepare a complete hydraulic design for the undersluice section for high flood condition with figures, on the basis of hydraulic jump theory and Khosla's theory. A safe exit gradient of 1/6 may be assumed. 0.5 metres retrogression and 20% discharge concentration may be assumed where non-unioform flow is likely to occur. Assume any other data if not given. (10)


- 5. Write short notes with neat sketches for the following:
 - (a) Sarda Type Fall
 - (b) Trapezoidal Notch Fall
 - (c) Ogee Spillway
 - (d) Shaft Spillway

(8)

6. (a) What is an elementary profile of a gravity dam? Find the width of elementary gravity dam whose height is 100 m. Specific gravity of dam material 2.2 and seepage coefficient at the base C=0.8.

(b) How does Khosla's theory differ from Bligh's theory with regard to the design of weirs on permeable foundation? (4)

- 7. A river discharges 1300 m³/sec of water at high flood level of RL=106. A weir is constructed for flow diversion with a crest length of 235 m and total length of concrete floors as 40 m. The weir has to sustain the under seepage at a maximum static head of 2.5 m. The silt factor and the safe exit gradient for the river bed material are 1.1 and 1/6 respectively. Determine the depth of cut-off required at the d/s end of the concrete floor. Take the level of d/s concrete floor as RL=100. Check for exit gradient. (4)
- 8. Determine the forces due to self-weight, water pressure and uplift pressure on the nonoverflow gravity dam as shown in Figure. Take specific weight = 24 kN/m^3 and specific weight of water (w) = 9.81 kN/m^3 .

(7)