Roll No of Student

End Semester Examination, November-December 2023

Branch: Architecture Subject Code: CE-318

Year and Sem.: B.Arch. $3^{\text {rd }}$ Yr. (5 ${ }^{\text {th }}$ Sem.) Subject: Design of Steel Structure Time Duration: 3 Hours Maximum Marks: 50 Marks

Notes: (1) All questions are compulsory. (2) Assume suitable data (if missing) and clearly mention it in the answer sheet. (3) This paper contains two pages and a total of five questions.

Q1. Two plates $200 \times 10 \mathrm{~mm}$ of grade 410 are connected by 20 mm bolts using a double cover butt joint. Design the bolted connection to transmit a pull equal to the strength of the plate. Bolts are of grade 4.6. Take pitch $=40 \mathrm{~mm}$.
(10 Marks)

Q2. A flat of size $160 \times 10 \mathrm{~mm}$ is used as a tension member in a roof truss. It can be connected to the gusset plate by bolts. Calculate the maximum tension the flat can carry if the diameter of the bolt is 16 mm . Assume yield stress of $250 \mathrm{~N} / \mathrm{mm}^{2}$ and ultimate stress of $410 \mathrm{~N} / \mathrm{mm}^{2}$.

Q3. Design a single-angle strut of a roof truss carrying a factored cóñị̂ressive load of 95 kN . The centre-to-centre distance of the intersection is 2.0 m . Use steel Fe-410. Assume nos. of bolt at each end connection is 2 and fixed gusset/connecting member fixidity. Take trial section USA $75 \times 75 \times 8 \mathrm{~mm}$.
(10 Marks)

Q4. Determine the design dead load and design live load on the purling of an industrial building and design wind pressure for the building, using the following data:

- Building is located at Chennai
- Class of building: general with life of 50 years.
- Terrain: Category 2.
- Maximum dimension: 50 m .
- Width of building: 18 m .
- Height at eve level: 20 m .
- Topography: θ < 3 degree.
- Permeability: Medium.
- Span of truss: 18 m .
- Pitch: $1 / 5$.
- Sheeting: A.C. sheets.
- Spacing of purlins: 1.25 m .
- Spacing of trusses: 4 m .

Q6.(A) Discuss the case study of any one well known steel structure over the globe from structural engineer and architectural point of view.
(B) For the following symmetric-l section, determine the plastic section modulus, elastic section modulus and shape factor about major axis. Take Fy $=\mathbf{2 5 0} \mathbf{~ M P a}$.

(Best of Luck)

