

Subject Code: PH-211
Semester: $3^{\text {rd }}$
Max. Marks: 50

Subject Name: Quantum Physics
Branch: B.Tech. (Engg. Physics)
Max. Time: 03 Hours

Note: Attempt all questions.
Q1: (a) Write the mathematical expression for a wave packet that represents waves associated with a moving particle.
(b) Solve the commutation relation: $\left[\widehat{p_{x}}, \widehat{X}\right]$
(c) Write down time independent Schrödinger's equation
(d) Write a mathematical expression for $\widehat{L_{z}}$.
(e) Write down the periodic boundary condition for the rigid rotor case.

Q2: Consider two states, $\left.\left.I \psi\rangle=9 i I \phi_{1}\right\rangle+2 I \phi_{2}\right\rangle$, and $\left.\left.\left.I \varphi\right\rangle=-\frac{i}{\sqrt{2}} I \phi_{1}\right\rangle+\frac{1}{\sqrt{2}} I \phi_{2}\right\rangle$ where vectors, $\left.I \phi_{1}\right\rangle$ and $\left.I \phi_{2}\right\rangle$ form a complete and orthonormal basis. Calculate the operators $\left.I \psi\right\rangle\langle\varphi I$ and $I \varphi\rangle\langle\psi I$.

Q3: Consider a particle incident on a step potential of height V_{o} from the left with energy E greater than V_{o}. Calculate the reflection and transmission coefficients

Q4: Determirre the expression for the 1-D Harmonic oscillator's energy eigenvalues and eigenfunction.

Q5: Discuss in detail the space quantization of angular momentum components and their magnitudes.

