Abhilash Ganti 22/11/23(M)

Roll no.:

NATIONAL INSTITUTE OF TECHNOLOGY, HAMIRPUR, H.P.

Department of Material science and Engineering

End-Term Examinations (2023-24)

Transport Phenomena (MS-212)

Duration: 3 hours

Maximum Marks: 50 .

Attempt all the questions. Explain with suitable diagram wherever necessary.	
Q1: What is diffusion? What are the driving forces for diffusion?	[4]
Q2: What are the different types of diffusion mechanism in solids?	[4]
Q3: What is the analogy between the heat and mass transfer?	[4]
Q4: Explain the applications of heat and mass transfer in metallurgical engineering with exa	umples [8]
Q5: What is self-diffusion? What are the factors affect the self-diffusion?	[2]
Q6: How diffusion of gasses take place through porous solids	[4]
Q7: If the grain size of the Silver has increased four times, by what factor would the net di	ffusion
by grain boundary diffusivity change? (assume that all grains rectangle in nature)	[4].
Q8: Explain the difference between conduction, convection and radiation?	[4]
Q9: What is Newton's law of viscosity and explain Newtonian and non- Newtonian fluid examples.	ls with [3]
Q10: Derive the Navier-stokes equation and explain the use of Navier-stokes	[3]
Q11: a) What is steady state flow?	[3+3]
b) What is boundary layer phenomena?	

Q12: What is thermal conductivity? What are the factors effect the thermal conductivity and how thermal conductivity changes with increasing alloying elements in Fe? [4]