Dr DeebekSham

18/11/2012 Roll No

National Institute of Technology Hamirpur (H.P.) B.Tech. End-Semester Examination, Nov. 2023

Branch			,			
Dianch	:	ME	Course Code	:	ME-431	
Semester	:	7 th	Time	:	3 Hrs	
Course Name	:	Optimization Methods in Engineering	Max. Marks	:	50	
Time & Session	:	(02:30 PM -05:30 PM) & 'B'	Date	:	22.11.23	

NOTE: Attempt all questions which carry marks as indicated in the []. Assume suitable data if missing.

- Q-1. Minimize f(x₁, x₂) = (x₁² + x₂ − 11)² + (x₁ + x₂² − 7)² in the interval 0 ≤ x₁, x₂ ≤ [8]
 5. Take initial point x⁽⁰⁾ = (1,1); Size reduction parameter Δ= (2,2). Solve upto 4 Iterations and achieve the accuracy of less than 1.5 by using Box's Evolutionary Method.
- Q-2. Explain the Algorithm of Ant colony and Particle swarm optimization with suitable [8] example.
- Q-3. Minimize the following f(x) using conjugate gradient method (Fletcher Reeves): (i) $f(x) = 5x_1^2 + 2x_2^2 - 2x_1x_2 - 4x_1 - 4x_2 + 4$ (ii) $f(x) = 2x_1^2 + x_2^2 + 2x_1x_2 + x_1 - x_2$ Table Little D in (0)

Take Initial Point $x^{(0)} = (0,0)^T$ in both parts.

Q-4. In the following minimization problem

Subject to $\begin{array}{l}
\text{Minimize } f(x) = x_1^2 + x_2 \\
g_1(x) = 10 \exp(x_1^2 + x_2) - 5x_1 + 12 \ge 0 \\
g_2(x) = 5x_1^3 + 2x_2 - 9 \le 0, \\
0 \le x_1, x_2 \le 3
\end{array}$

For the above optimization problem, check if the following points are KT points. (a) $(1, 4)^T$ (b) $(3, 0)^T$

- Q-5. Use Branch & Bound Method, solve the following LPP
 - Subject to $\begin{array}{l}
 Max \ Z = \ 8x_1 + 5x_2 \\
 9x_1 + 5x_2 \leq 45 \\
 x_1 + x_2 \leq 6 \\
 x_1, x_2 \geq 0 \ \& \ x_1, x_2 \ are \ integers \\
 \end{array}$
- **Q-6.** Minimize the function using Hooke-Jeeves pattern search method. Assume initial point [10] $(1,1)^{T}$, increment vector $\overline{\Delta} = (0.5, 0.5)^{T}$, Step reduction factor $\propto = 2$ desired accuracy $\varepsilon = 0.7$.

Minimize
$$f(x) = (x_1^2 + x_2 - 11)^2 + (x_2^2 + x_1 - 7)^2$$

[8]

[8]