Booger Rams

National Institute of Technology Hamirpur (H.P.)

B. Tech (Mathematics \& Computing)

End Semester Theory Examination-2023

Subject Name: Analysis and Design of Algorithms
Subject Code: MA-434
Max Marks: 50
Time: 09:30 AM - 12:30 PM

INSTRUCTION TO CANDIDATES:

1. SECTION-A contains six questions carrying three marks each.
2. SECTION-B contains two questions carrying six marks each.
3. SECTION-C contains five questions carrying four marks each.

Note: All questions are compulsory.

SECTION- A

1) What are greedy algorithms?
2) Explain the longest common sequence problem with an algorithm.
3) Differentiate BFS and DFS (minimum 5 differences).
4) What is a graph coloring problem? Explain with an example.
5) Differentiate divide and conquer approach with dynamic programming (minimum 5 differences).
6) What is NP-hard and NP-complete classes?

SECTION- B

1) What is Huffman coding? Write an algorithm for Huffman coding. Encrypt the following data with the Huffman coding technique.

$$
a(30), b(1), c(10), d(4), e(2), f(30)
$$

2) Illustrate 8 -queen problem with backtracking.

SECTION- C

1) Formulate the Knapsack problem with the greedy method and find the optimal solution for $\mathrm{n}=7$, maximum weight $=43$, (Profit of object 1 to object 7) $=(75,50,90,40,30,80,60)$, $($ weight $)=(10,8,12,5,4,11,7)$.
2) Write an algorithm for finding a maximum and minimum number.
3) Apply dynamic programming to find the optimal order of multiplying 4 matrices
$\mathrm{A}_{1 \mathrm{X} 3}, \mathrm{~B}_{3 \mathrm{X} 2}, \mathrm{C}_{2 \mathrm{X} 1}, \mathrm{D}_{1 \mathrm{X} 4}$.
4) Write an algorithm for the $0 / 1$ knapsack problem.
5) Find the shortest path for the given graph from source node ' A ' with the Dijkstra algorithm. Distance from one node to another is as follows: A to $\mathrm{B}=5, \mathrm{~A}$ to $\mathrm{C}=2, \mathrm{~A}$ to $\mathrm{D}=1, \mathrm{~A}$ to $\mathrm{F}=3, \mathrm{~B}$ to $\mathrm{F}=1, \mathrm{~B}$ to $\mathrm{C}=2, \mathrm{~B}$ to $\mathrm{E}=4, \mathrm{C}$ to $\mathrm{D}=6, \mathrm{C}$ to $\mathrm{E}=5, \mathrm{D}$ to $\mathrm{E}=1, \mathrm{D}$ to $\mathrm{F}=3$.

