Salem

Time: 3 Hrs

1. (a) Suppose that the random variables X and Y have a joint density function given by $f(x, y)=c(2 x+y), \quad 0<x<6,0<y<5$ then find (a) the constant c , (b) the marginal distribution functions for X and Y , (c) the marginal density functions for X and Y , (d) $\mathrm{P}(3<\mathrm{X}<4, \mathrm{Y}>2)$.
(b) Let (X, Y) be a two-dimensional non-negative continuous random variable having the joint density given below. Test whether X and Y are independent and find the conditional density of X given $\mathrm{Y}=\mathrm{y}, f(x, y)=4 x y e^{-\left(x^{2}+y^{2}\right)}, x \geq 0, y \geq 0$
2. (a) Let X_{1}, X_{2} be independent random variables each having geometric distribution, then show that the conditional distribution of X_{1} given $X_{1}+X_{2}$ is uniform distribution.
(b) Show that the recurrence relation for the moments of Normal distribution is $\mu_{2 n}=\sigma^{2}(2 n-1) \mu_{(2 n-2)}$
3. (a) The daily consumption of milk in a city in excess of 20,000 gallons is approximately distributed as Gamma variate with parameter $\alpha=2$ and $\beta=0.0001$. The city has a daily stock of 30,000 gallons, and then what is the probability that the stock is insufficient on a particular day?
(b) If X is Exponential distributed with parameters λ, then find the value of k such that $P(X>k) \mid P(X \leq k)=a$
4. (a) Consider $\left\{X_{n}, n \geq 0\right\}$ be a Markov Chain with three states $\{0,1,2\}$ has the following transition matrix A and the initial distribution is (0.5, 0.3, 0.2), then find (i) $P\left(X_{3}=2, X_{2}=1, X_{1}=0, X_{0}=2\right)$,
(ii) $P\left(X_{3}=2, X_{1}=0, X_{0}=2\right)$, (iii) $P\left(X_{3}=2, X_{1}=0\right)$, (iv) $P\left(X_{2}=1\right)$

$$
A=\left[\begin{array}{lll}
0.2 & 0.3 & \tag{5}\\
& 0.6 & 0.3 \\
0.4 & & 0.3
\end{array}\right]
$$

(b) If be a Poisson process with rate $\lambda>0$, then prove that the random variable Y describing the number of events in any time interval of length $t>0$ has a Poisson distribution with parameter λt.
5. (a) Derive the steady state equations for the model (M/M/C): (N/FCFS), and also derive p_{0}, p_{n}, L_{q}, \& average number in the service facility $\left(L_{s}-L_{q}\right)$.
(b) A telephone exchange has two long distance operators. The telephone company finds that, during the peak load, long distance calls arrive in a Poisson fashion at an average rate of 15 per hour. The length of service on these calls is approximately Exponential distributed with mean length 5 minutes. If the subscriber waits for his turn, what is the expected waiting time?

