Note: All questions are compulsory.

1. Define the following terms with examples:
(a) Floor function
(b) Big-Theta
(c) Nested Quantifier
(d) Full-adder
(e) Isomorphic graphs
2. (a) Using a Karnaugh map, simplify each boolean expression:

$$
\begin{equation*}
E_{1}=w x y z+w x y z^{\prime}+w x y^{\prime} z^{\prime}+w x y^{\prime} z+w^{\prime} x y z+w^{\prime} x y^{\prime} z \tag{2}
\end{equation*}
$$

(b) How can this English sentence be translated into a logical expression? "You cannot ride the roller coaster if you are under 4 feet tall unless you are older than 16 years old."
(c) Use set builder notation and logical equivalences to establish the second De Morgan law $\overline{A \cap B}=\bar{A} \cup \bar{B}$, by quoting every law used.
(d) Prove that the complete graph K_{5} is nonplanar.
(e) Find the DNF of the boolean function $f(x, y, z)=x+y z$, using the laws of boolean i algebra, by quoting every law used.
3. Let S be the set of all bit strings. Suppose that R_{3} is the relation on S such that $s R_{3} t$ either when $s=t$ or both s and t are bit strings of length 3 or more that begin with the same three bits. What are the sets in the partition of the set of all bit strings arising from the relation R_{3} on the set of all bit strings ?
4. Solve the LNHRRWCCs: $a_{n}=5 a_{n-1}-6 a_{n-2}+8 n^{2}$, where $a_{0}=4$ and $a_{1}=7$.
5. Using the laws of logic, simplify the boolean expression ($p \wedge \sim q) \vee q \vee(\sim p \wedge q)$, by quoting every law used.
6. Prove that the number of leap years ℓ after 1600 and not exceeding a given year y is given by $\ell=\left\lfloor\frac{y}{4}\right\rfloor-\left\lfloor\frac{y}{100}\right\rfloor+\left\lfloor\frac{y}{400}\right\rfloor-388$.
7. Draw the Hesse diagram for the poet (A, \mid), where $A=\{1,2,3,6,8,12\}$ and \mid denotes the divisibility relation. Find the minimal, maximal, least and greatest elements.
8. Using generating functions, solve the Fibonacci recurrence relation $F_{n}=F_{n-1}+F_{n-2}$, where $F_{1}=1=F_{2}$.
9. (a) What is the chromatic number of the graph C_{n}, where $n \geq 3$?
(b) The given table lists the students taking the various courses at NIT Hamirpur. The examination cell would like to develop a conflict-free final exam schedule using as few time slots as possible. How can we help her ?

Course A	Course B	Course C	Course D	Course E	Course F	Course G	
Prakash	Parveen	Satin	Prakash	Prakash	Jyoti	Jyoti	
Ankit	Vandana	Vandana	Om	Carven	Om	Prakash	
Carven	Kanika	Anjali	Sushma	Sanjeev	Anjali	Sanjeev	
Om	Sahil	Kanika	Saini	Sharma	Kumar	Toshith	
Sushma	Upasana	Kumar	Sahil	Kanika	Upasana	Sain	
Kapil							

