Dr. Sukatr Throw

(5)

(5)

National Institute of Technology Hamirpur **Department of Electrical Engineering End Sem Examination Optimization Methods in Engineering (EE-431)**

Max Marks: 50

Max Time: 3:00 hrs.

Note: Attempt all the questions.

1.	(a) Describe an Optimal Control Problem with an example.	(5)
	(b) Solve $f(x) = \frac{1}{2}(x_1^2 + x_2^2 + x_3^2)$	
	Subject to constraints	
	$g_1(x) = x_1 - x_2$	
	${m g}_2(x)=x_1+x_2+x_3-1$ by Lagrangian multiplier method	(5)

2. (a) Find the stationary points and corresponding function values for $f(x) = 10x_1^6 - 48x_1^5 + 15x_1^4 + 200x_1^3 - 120x_1^2 - 480x_1 + 100$

(b) Describe the different phases for development of an optimization problem. (5)

3. (a)Write down the algorithm of Simplex Method for unconstrained NLP problem. (6) (b)Minimize

 $f(X) = x_1 - x_2 + 2 x_1^2 + 2x_1 x_2 + x_2^2$ Take the initial Simplex as $X_1 = \binom{4}{4}$, $X_2 = \binom{5}{4}$, $X_3 = \binom{4}{5}$ and $\alpha = 1$, $\beta = 0.5$, $\gamma = 2.0$. For convergence use the stopping criteria use $\in = 0.2$ (4)

- 4. (a) Minimize $f(X) = -x_1 x_2$, subject to $g(X) = x_1 + x_2 4 \le 0$ by using Penalty function approach. (4) (b) Write step by step procedure of Rank 1 Update method and draw flowchart. (5) (c) Find the minimum value of $f(x) = x^2 + 2x$ within the interval [-3,4] using Fibonacci method. Obtain the optimal value within 5% of exact value.
- 5. Describe the step by step procedure of forming the recursive equations in backward and forward manner in a typical Dynamic Programming Problem along with the block diagram.(6)