National Institute of Technology, Hamirpur (H.R) B

Examination: B.Tech. End Semester Examination, November-2023

Branch : Open Elective

Course : Elements of Control Systems
Semester : ${ }^{\text {th }}$

Time: 03:00 Hours
Code : EE-371
Maximum Marks: $\mathbf{5 0}$

Instruction: Attempt all the questions.

Q. 1. Explain the relative merits and demerits of open and closed loop systems. Also explain the DC servomotor in detail with suitable examples.
Q. 2. Draw the mechanical network (or nodal diagram) and write the nodal equations for the system shown in Fig. 1 and also draw the electrical current analog.

Q. 3. A unity feedback system is characterized by an open-loop transfer function $G(s)=\frac{K}{s(s+10)}$. Determine the gain K so that the system will have a damping ratio of 0.5 . For this value of K, determine settling time, peak overshoot and time to peak overshoot for a unit step input.
Q. 4. Find the transfer function for the block diagram shown in Fig. 2 using block diagram reduction technique.
Q. 5. Using Routh's stability criterion, ascertain stability for the following characteristic equation:

$$
\begin{equation*}
s^{6}+2 s^{5}+8 s^{4}+12 s^{3}+20 s^{2}+16 s+16=0 \tag{05}
\end{equation*}
$$

Q. 6. Plot the root locus pattern of a system whose forward path transfer function is $G(s)=\frac{K}{s(s+2)(s+3)}$.
Q. 7. Sketch the Bode plot for a unity feedback system characterized by the open-loop transfer function $G(s)=$ $\frac{K(1+0.2 s)(1+0.025 s)}{s^{3}(1+0.001 s)(1+0.005 s)}$, show that the system is conditionally stable and find the range of values of K for which the system is stable. Also find: (i) Gain Margin (GM), and (ii) Phase Margin (PM).
Q. 8. Explain:
(e) State models and state s
, (c) State Vector
(d) State Space, and
(e) representation of linear continuous time systems with examples.
Q. 9. Find the state transition matrix $(\phi(t))$ for

$$
\dot{x}=\left[\begin{array}{ccc}
-2 & 1 & 0 \tag{05}\\
0 & -2 & 1 \\
0 & 0 & -2
\end{array}\right] x
$$

Q. 10. Determine the state Controllability and Observability of the system described by

$$
\dot{x}=\left[\begin{array}{ccc}
-3 & 1 & 1 \\
-1 & 0 & 1 \\
0 & 0 & 1
\end{array}\right] x+\left[\begin{array}{ll}
0 & 1 \\
0 & 0 \\
2 & 1
\end{array}\right] u \text { and } y=\left[\begin{array}{lll}
0 & 0 & 1 \\
1 & 1 & 0
\end{array}\right] x
$$

