$\mathcal{N a t i o n a l}$ Institute of Technology, $\mathcal{H a m i r p u r}$ (H.P.)

Examination: B.Tech. End Semester Examination, November-2023

Branch: Electrical Engineering
Course: Electromagnetic Field Theory
Time: 03:00 Hours

Semester : III ${ }^{\text {rd }}$
Code : EE-212
Maximum Marks: 50

Instruction: Attempt all the questions.

Q. 1. What is the statement of the curl of a vector and explain it with suitable example. Also give the statement of the Stokes's theorem and prove it.
Q. 2. Two point charges -4 mC and 5 mC are located at $(2,-1,3)$ and $(0,4,-2)$, respectively. Find the potential at $(1,0,1)$, assuming zero potential at infinity.
Q. 3. If plane $z=0$ carries uniform current $K=K_{y} a_{y}$,
$\boldsymbol{H}=\left\{\begin{array}{l}\frac{1}{2} K_{y} a_{x}, \quad z>0 \\ -\frac{1}{2} K_{y} a_{x}, \quad z<0\end{array} \quad\right.$ Obtain H by using the concept of vector magnetic potential.
Q. 4. A parallel-plate capacitor with plate area of $5 \mathrm{~cm}^{2}$ and plate separation of 3 mm has a voltage $50 \sin 10^{3} t V$ applied to its plates. Calculate the displacement current assuming $\varepsilon=2 \varepsilon_{0}$.
Q. 5. In free space ($z \leq 0$), a plane wave with $\boldsymbol{H}_{\boldsymbol{i}}=10 \cos \left(10^{8} t-\beta z\right) a_{x} m A / m$ is incident normally on a lossless medium $\left(\varepsilon=2 \varepsilon_{0}, \mu=8 \mu_{0}\right)$ in region $z \geq 0$. Determine the reflected wave $\boldsymbol{H}_{r}, \boldsymbol{E}_{r}$ and the transmitted wave $\boldsymbol{H}_{t}, E_{t}$.
Q. 6. A uniform plane wave propagating in a medium has $E=2 e^{-\alpha z} \sin \left(10^{8} t-\beta z\right) a_{y} V / m$. If the medium is characterized by $\varepsilon_{r}=1, \mu_{r}=20$, and $\sigma=3 \mathrm{~S} / \mathrm{m}$, Find α, β, and \boldsymbol{H}.
Q. 7. Explain the power and the pointing vector in detail with suitable examples.
Q. 8. A distortionless line has $Z_{0}=60 \Omega, \alpha=20 \frac{\mathrm{mNp}}{\mathrm{m}}, u=0.6 \mathrm{c}$, where c is the speed of light in a vacuum. Find R, L, G, C, and λ at 100 MHz .
Q. 9. What do you mean by Smith Chart and explain it in brief with example. Also, explain the procedure to draw the Smith Chart and application of the Smith Chart.
Q. 10. A rectangular waveguide with dimensions $a=2.5 \mathrm{~cm}, b=1 \mathrm{~cm}$, is to operate below 15.1 GHz . How many TE and TM modes can be waveguide transmit if the guide is filled with a medium characterized by $\sigma=0, \mu_{r}=1$, and $\varepsilon=4 \varepsilon_{0}$? Calculate the cutoff frequencies of the modes. [05]

