Code

De Ram Niwash Mahia 22/11/23 (M) Roll No. 2.2.BEE 0.5.2 National Institute of Technology, Hamirpur (H.P.)

Examination: B.Tech. End Semester Examination, November-2023

Branch: Electrical Engineering

Semester: IIIrd

Course: Electromagnetic Field Theory

: EE-212

Time: 03:00 Hours

Maximum Marks: 50

Instruction: Attempt all the questions.

- Q. 1. What is the statement of the curl of a vector and explain it with suitable example. Also give the [05]statement of the Stokes's theorem and prove it.
- Q. 2. Two point charges -4 mC and 5 mC are located at (2, -1, 3) and (0, 4, -2), respectively. Find the [05]potential at (1, 0, 1), assuming zero potential at infinity.
- **Q. 3.** If plane z = 0 carries uniform current $K = K_y a_y$,

$$H = \begin{cases} \frac{1}{2} K_y a_x, & z > 0 \\ -\frac{1}{2} K_y a_x, & z < 0 \end{cases}$$
 Obtain H by using the concept of vector magnetic potential. [05]

- Q. 4. A parallel-plate capacitor with plate area of $5 cm^2$ and plate separation of 3 mm has a voltage $50 \sin 10^3 t V$ applied to its plates. Calculate the displacement current assuming $\varepsilon = 2\varepsilon_0$. [05]
- Q. 5. In free space $(z \le 0)$, a plane wave with $H_i = 10\cos(10^8t \beta z)a_x \, mA/m$ is incident normally on a lossless medium ($\varepsilon = 2\varepsilon_0, \mu = 8\mu_0$) in region $z \ge 0$. Determine the reflected wave H_r, E_r and the [05]transmitted wave H_t , E_t .
- Q. 6. A uniform plane wave propagating in a medium has $E = 2e^{-\alpha z} \sin(10^8 t \beta z) a_y V/m$. If the medium is characterized by $\varepsilon_r = 1$, $\mu_r = 20$, and $\sigma = 3$ S/m, Find α , β , and H. [05]
- Q. 7. Explain the power and the pointing vector in detail with suitable examples. [05]
- Q. 8. A distortionless line has $Z_0 = 60 \Omega$, $\alpha = 20 \frac{\text{mNp}}{\text{m}}$, u = 0.6c, where c is the speed of light in a vacuum. [05] Find R, L, G, C, and λ at 100 MHz.
- Q. 9. What do you mean by Smith Chart and explain it in brief with example. Also, explain the procedure to [05]draw the Smith Chart and application of the Smith Chart.
- Q. 10. A rectangular waveguide with dimensions a = 2.5 cm, b = 1 cm, is to operate below 15.1 GHz. How many TE and TM modes can be waveguide transmit if the guide is filled with a medium characterized by $\sigma=0$, $\mu_r=1$, and $\varepsilon=4\varepsilon_0$? Calculate the cutoff frequencies of the modes.