

Fig. 3 (b)
B. For the ladder network of Fig. 3(b), find the driving point-impedance at the $1-1^{\prime}$ terminal with $2-2$ 'open.

Q4. A. Find transmission parameters for the two-port network shown in Fig. 4 (a)


Fig. 4 (a)
B. Express the reciprocity and symmetry criteria in term of inverse hybrid and transmission parameter of two port network.

Q5. A. Test the polynomial $P(s)$ of Hurwitz property.

$$
\begin{equation*}
P(s)=s^{6}+3 s^{5}+8 s^{4}+15 s^{3}+17 s^{2}+12 s+4 \tag{5}
\end{equation*}
$$

B. Realize all Foster and Cauer forms of the following impedance function

$$
\begin{equation*}
Z(s)=\frac{(s+1)(s+3)}{s(s+2)} \tag{10}
\end{equation*}
$$

## Dr Rajesh Karma

## National Institute of Technology, Hamirp Name of the Examination: B.Tech. Third Semester

Course Name : Network Analysis and Synthesis Course Code : EE-211
Time: 3 Hours
Maximum Marks: 50

## Note:

1. All Questions are compulsory 2. Draw the relevant diagrams/figures
2. Assume data wherever required

Q1. A. Obtain current Io in Fig. Fig.l (a) using Norton's theorem.


1 (a)


1 (b)
B. Find $v_{o}(t)$ in the circuit of Fig. 1 (b). Assume $v_{o}(0)=5 \mathrm{~V}$.

Q2. A. For the network shown in Fig. 2 (a), write down the tie-set matrix and obtain the network
equilibrium equation in matrix form using KVL. Calculate loop currents. \{Use branches with $4 \Omega, 6 \Omega$, and $2 \Omega$ (T-Section) as twigs $\}$.


2 (a)
Q3. A. The transform voltage of a network is given as

$$
\begin{equation*}
V(s)=\frac{3 s}{(s+2)\left(s^{2}+2 s+2\right)} \tag{5}
\end{equation*}
$$

Draw its pole-zero diagram and hence obtain $V(t)$.

