Dr. Krishan Kumar BBa

National Institute of Technology Hamirpur (HP) Electronics & Communication Engineering Department End Semester Examination, November 2023 B.Tech./Dual Degree (ECE) – 3rd Semester Communication Theory (EC-213)

Time: 3 Hrs.

Max. Marks: 50

Note: The symbols and variables used have their usual meaning. All questions carry equal marks.

- Q1. Attempt *any two* parts:
 - (a) Sketch the following signals and compute their normalized energy.
 - (i) $x_1(t) = t u(t)$, (ii) $x_2(t) = 2 [u(t+1) u(t-1)]$.
 - (b) Determine whether the system described by y(t) = t x(t) (with input signal x(t) and output signal y(t)) is time-invariant and stable.
 - (c) Establish the mathematical relation between unit step, unit impulse and unit ramp functions.

Q2. Discuss sampling theorem. What is aliasing and how it can be removed? A continuous time signal is given as: $x(t) = 8 \cos 200\pi t$, determine

- (i) Minimum sampling rate i.e., Nyquist rate required to avoid aliasing.
- (ii) If sampling frequency $f_s = 400$ Hz. What is the discrete-time signal x(n) or $x(nT_s)$ obtained after sampling?
- (iii) If sampling frequency $f_s = 150$ Hz. What is the discrete-time signal x(n) or $x(nT_s)$ obtained after sampling?
- (iv) What is the frequency $0 < f \le f_s/2$ of sinusoidal that yields samples identical to those obtained in part (iii)?

OR

Find the Fourier transform of the following signals: (i) $x_1(t) = e^{-|t|}$ (ii) $x_2(t) = \frac{1}{1+t^2}$. Also, determine the Nyquist rate (minimum sampling rate) for each of the following signals:

- (i) $x(t) = cos(200\pi t) + sin(400\pi t)$
- (ii) $y(t) = \frac{d}{dt}(x_1(t))$, where $x_1(t)$ is band limited to 20 KHz.
- Q3. (a) List the properties of CDF. Find the constant k for the density function $f_X(x) = kx^2$, for 0 < x < 2 and zero elsewhere. Also compute P(1 < x < 2).
 - (b) What do you mean by mean value and variance of a random variable? Find the expected values E(X) and $E(X^2)$ of a random variable X whose probability density function is given by

$$f_X(x) = \begin{cases} 2e^{-2x}, & x > 0; \\ 0, & \text{otherwise.} \end{cases}$$

Discuss the following types of noise in communication systems Q4. (a)

(i)

- Thermal noise (ii) Shot noise
- An amplifier operating over the frequency range from 16 MHz to 20 MHz has a 5 $K\Omega\,$ input (b) resistor. Calculate the rms noise voltage at the input to this amplifier if the ambient temperature is 27°C.
- Consider a binary memoryless source X with two symbols x_1 and x_2 . Show that the entropy Q5. (a) H(X) is maximum when both x_1 and x_2 are equiprobable.
 - Find the mutual information of the channel shown in the channel diagram below. Given (b) that $P(x_1) = 0.6$ and $P(x_2) = 0.4$.

