22/11.2023

National Institute of Technology, Hamirpur (H.P.)

 End Semester Examination : B.Tech/ Dual Degree (Dec 2023)Branch : E\&CE EC-313 : Digital Signal Processing

Time : 3 Hrs
Note:
Semester: $5^{t h}$
All symbols used have their usual meanings.
Assume necessary data, if any.
Attempt all parts of the question at one place only.
1.
(a) Determine whether or not the following signals are periodic:
and

If periodic find the fundamental period.

$$
\begin{gathered}
x_{1}(n)=2 \exp (j(n / 6-\pi))+\exp (j 6 \pi n) \\
x_{2}(n)=\cos (3 \pi n / 6) \cos (\pi n / 8) .
\end{gathered}
$$

(b) Compute the convolution $y(n)=x(n) * h(n)$ for the following pair of signals.
2.

$$
x(n)= \begin{cases}1 & \text { for } n=-2,0,1 \\ 2 & \text { for } n=-1 \\ 0 & \text { elsewhere }\end{cases}
$$

$$
h(n)=\delta(n)-\delta(n-1)+\delta(n-4)+\delta(n-5)
$$

(a) Determine the z-transform of the signal $x(n)=\left(\frac{1}{2}\right)^{n} u(n+2)+n 3^{n} u(-n-1)$ [10
(b) Consider the following LTI system $u(n+2)+n 3^{n} u(-n-1)$.

Determine:

$$
y(n)=0.7 y(n-1)-0.1 y(n-2)+2 x(n)-x(n-2)
$$

i. The impulse response.
ii. The zero state step response.
(a) A signal $\mathrm{x}(\mathrm{n})$ has the discrete time Fourier transform $X(\omega)$:

$$
X(\omega)=\frac{1}{\left(1-a e^{-j \omega}\right)} .
$$

Determine the Fourier transforms of the following signals using properties of DTFT.
i. $x(2 n+1)$
ii. $e^{\frac{\pi n}{2}} x(n+2)$
iii. $x(n) * x(-n)$
iv. $x(-2 n)$
(b) A 8-point sequence $x(n)$ has the Fourier series coefficients:

$$
C_{k}= \begin{cases}\sin \left(\frac{k \pi}{3}\right), & \text { for } 0 \leq k \leq 6 \\ 0, & \text { for } k=7\end{cases}
$$

Calculate the energy of $x(n)$.
4.
[10 Marks]
(a) The computational time for calculating N-DFT is determined by the computational time required to evaluate number of complex multiplications and complex additions. If a complex multiplication requires $2 \mu \mathrm{~s}$ and a complex addition requires $1 \mu \mathrm{~s}$. Then, evaluate the computational time required to calculate 2048-point DFT using direct computation and radix-2 decimation in time or frequency FFT algorithm.
(b) Compute the 8-point DFT using radix-2 decimation in time FFT algorithm of the following signal:

$$
x(n)=\cos (\pi n) \quad 0 \leq n \leq 7 .
$$

5.

[10 Marks]
(a) Obtain direct form I, Direct form II, cascade, and parallel structures for the following system:

$$
y(n)=y(n-1)-\frac{1}{2} y(n-2)+x(n)-x(n-1)+x(n-2)
$$

(b) For the sequences

$$
x_{1}(n)=\cos \frac{\pi}{4} n, \quad x_{2}(n)=\sin \frac{\pi}{4} n, \quad 0 \leq n \leq 7 .
$$

Calculate a 8-point circular convolution of $x_{1}(n)$, and $x_{2}(n)$.

Best of Luck

