Dr. Hole Gar

National Institute of Technology Hamirpur (H. P.)
B. Tech. (Chemical Engineering) - $7^{\text {th }}$ Semester End Semester Examination 2023-24 CH-430 Optimization of Chemical Process

Max. Marks: 50

Duration: 3 hrs .

- This question paper consists of five questions and one page.
- Attempt all questions. Make suitable assumptions, if necessary, by clearly stating them.
- Marks will be deducted for omitting steps.

$\mathbf{1}$	Minimize the function using Lagrange multiplier method minimize $f\left(x_{1}, x_{2}\right)=3 x_{1}^{2}+4 x_{2}^{2}$ subject to $2 x_{1}-3 x_{2}=10$	$\mathbf{1 0}$
$\mathbf{2 .}$	minimize $f\left(x_{1}, x_{2}\right)=6 x_{1}^{2}-3 x_{1} x_{2}+4 x_{2}^{2}-9 x_{1}$ with starting point $X_{0}=\left\{\begin{array}{l}5 \\ 2\end{array}\right\}$ using the Powell's method.	$\mathbf{1 0}$
$\mathbf{3}$	Consider the minimization of the function using the Simplex method Maximize $Z=5 x_{1}+6 x_{2}$ Subject to $x_{1}+x_{2} \leq 5 ; 3 x_{1}+x_{2}=10 ; x_{1}+3 x_{2} \geq 6 ; x_{1}, x_{2} \geq 0$	$\mathbf{1 0}$
$\mathbf{4}$	Use the Hooke-Jeeves method to min $f(x)=-x_{1}-2 x_{2}+6 x_{1}^{2}-6 x_{1} x_{2}+2 x_{2}^{2}$ starting point $X^{(1)}=\left\{\begin{array}{l}0 \\ 0\end{array}\right\}$. Take $\Delta x_{1}=\Delta x_{2}=0.8$, step length as 0.1 and $\varepsilon=0.1$.	$\mathbf{1 0}$
$\mathbf{5}$	Use Newton's method to minimize the function $f\left(x_{1}, x_{2}\right)=x_{1}-x_{2}+4 x_{1}^{2}+3 x_{1} x_{2}+x_{2}^{2}$. With starting point at $X^{(0)}=\left\{\begin{array}{l}0 \\ 0\end{array}\right\}$.	$\mathbf{1 0}$

